Quando a ddp numa ponte de Wheatstone é zero ?

Acima, esta esquematizada uma ponte de Wheatstone.
Na figura acima, V é a fonte de energia, e ∆V a tensão que é zero quando a ponto de Wheatstone está em equilíbrio.

Assim, para que ∆V seja zero não pode passar corrente por ∆V, pois a corrente elétrica só se desloca para pontos de menor potencial. Se ∆V é zero, então não há diferença de potencial entre seus extremos, logo a corrente será a mesma em R1 e em R4, o mesmo ocorrendo para R2 e R3. Logo, a tensão V fornecida é:

V = I23*(R2 + R3) = I14*(R1 + R4). Considerando-se que as corrente I23 e I14 deslocam-se de baixo para cima na figura.

A tensão medida em ∆V é:
∆V = R1*I14 + R2*(-I23). Perceba, o uso do sinal '-' deve-se pelo fato de que a corrente é de baixo para cima, e para que o caminho seja mantido iniciando de R1 e passando por R2 para calcular a ddp em ∆V, I23 é negativo já que I14 é positivo.
O mesmo ocorre se fizermos a malha de baixo:

∆V = R4*(-I14) + R3*I23               (1)

Porém, queremos que ∆V = 0, logo:
R1*I14 - R2*I23 = 0    (ou -R4*I14 + R3*I23 = 0, o resultado daria o mesmo.)
De onde tiramos que:
I14R2*I23 / R1

Substituindo isso EM (1):
R3*I23 - R4*(R2*I23 / R1) = 0
R3*I23 = R4*(R2*I23 / R1)
Cortando I23
R3 = (R4*R2) / R1
R3*R1 = R4*R2

Logo, para que ∆V = 0, o produto cruzado das resistências deve ser igual.


Exercícios Resolvidos - Geometria analítica



Dado um triângulo cujos vértices são A(1,1), B(4,0) e C(3,4), determine:

a) O pé da altura relativa ao vértice C.
b) A área do triângulo ABC.

Solução:

a)

Para determinar este ponto, devemos encontrar a reta que passa por C e é perpendicular à reta AB, pois a altura relativa a algum vértice de um triângulo é, por definição, a reta que passa por esse ponto e é perpendicular à reta que une os outros dois vértices.

Como retas perpendiculares tem coeficientes angulares com sinal trocado e inversas, que calcular o coeficiente angular da reta AB:

Como AB passa por A(1,1), temos:

y = ax + b

a + b = 1


Como passa por B(4,0), temos:

y = ax + b

0 = 4a + b

Mas

a + b = 1

0 = 3a + (a+b)

0 = 3a + 1

a = -1/3

b = 4/3

Coeficiente angula da reta AB: -1/3

Logo, coeficiente angular da reta altura é: 3

Assim, ela tem a forma:

y = 3x + b

Mas essa reta deve passar pelo ponto C (3,4)

4 = 3*3 + b

b = 4 - 9 = -5

Logo, a reta é:

y = 3x - 5

O pé dessa altura é o ponto que as retas AB e a reta altura se interceptam:

Reta AB:

y = (-1/3)x + 4/3

Reta altura:

y = 3x - 5

Igualando ambas:

3x - 5 = (-1/3)x + 4/3

(10/3)x = 19/3

x = (19/10) = 1,9

y = 3*(19/10) - 5

y = 5,7 - 5 = 0,7


Ponto P = (1,9 , 0,7)


b) Sabendo que a altura deste triângulo vai do ponto P(1,9 , 0,7) ao ponto C(3,4), a distância 'd' entre esses pontos será o valor desta altura:

h² = (3, 1.9)² + (4 - 0,7)²

h² = 1,1² + 3,3²

h² = 1,21 + 10,89 = 12,1

h = 3,479

O tamanho da base, é a distância do ponto A ao ponto B.

d² = (4 - 1)² + (0 - 1)²

d² = 3² + 1² = 10

d = 3,1623

A área será:



A área ainda pode ser calculada pelo determinante da matriz:



Onde a primeira coluna são as coordenadas x dos vértices, e a segunda coluna as coordenadas y.


Exercício Resolvido - Probabilidade de ninguém pegar seu próprio nome em um amigo secreto

Numa brincadeira de amigo secreto, qual a probabilidade de ninguém tirar o próprio nome quando o número de participantes tende ao infinito? 

Solução:
Este exercício parece ser simples mas é muito complicado.
Vou tentar explicar a forma como fiz o mais detalhado possível, porém o leitor deve estar bem atento a cada passo.

Inicialmente, vamos deduzir o universo de possibilidades.

Não é difícil perceber que o universo é de n! para n participantes, pois, o primeiro a sortear tem 'n' nomes para retirar. O segundo terá '(n-1)'. O terceiro, '(n-2)'... Logo, o número de possibilidades é:

n*(n-1)*(n-2)*...*1 = n!

Dessas possibilidades, vamos procurar quais são favoráveis, e da divisão das possibilidades favoráveis pelo número total temos a probabilidade.

Vou chamar de Prob(n) = [P(n) / n!] a probabilidade solicitada. Ou seja, P(n) é o número de possibilidades favoráveis

Vamos lá. Um estudo específico rápido:
Se fosse 1 participante, a probabilidade seria 0%.

Se fossem 2, teríamos que o 1º não poderia pegar seu nome. Como o universo de possibilidades é 2 e apenas uma delas satisfaz, e probabilidade aqui seria 1/2 = 0,5

Se fossem 3, temos que pensar da seguinte forma para saber o universo de possibilidades:
Se o primeiro tirar seu nome, já não nos serve mais. Como este caso tem 2 possibilidades (a de o segundo e o terceiro também tirarem seus nomes, e a de o 2° tirar o nome do 3° e o 3° tirar o do 2°), resta verificar os outros casos;
Se o 1° tirar o nome do 2°:
Pode o 2° tirar o do 1° e o 3° o dele mesmo -> não serve;
Pode o 2° tirar o do 3° e o 3° o do 1° -> OK
Se o 1° tirar o do 3°, ocorre o mesmo, ou seja, das 2 possibilidades, onde uma é válida.
Assim, neste caso (3 participantes), o universo de possibilidades é 3*2*1 = 6, e as válidas são 2. Temos 2/6 = 1/3 a probabilidade.

Perceba que existem dois casos. Um é o primeiro pegar o seu próprio nome. E este não nos serve. O outro é ele pegar o nome de outro participante. Assim, restará o nome dele e de mais um. Supondo que o participante que o primeiro pegou o nome, pegar o nome do primeiro (ou seja, um pega o nome do outro), resta a situação de apenas um participante, ou seja, o participante que não sorteou só poderá pegar o próprio nome, que é o caso de se só existisse um participante.

Vamos analisar como seria com 4 participantes, o pensamento é análogo ao se fossem 3:
Se o 1° tirar seu nome, os outros casos não nos serve. Ou seja, temos 3! = 6 possibilidades que não servem.
Se o 1° tirar o nome do 2°:
O 2° tira o do 1° o 3° tira o próprio e o 4° o próprio -> Não serve
O 2º tira o do 1°, o 3° o do 4° o 4° o do 3º -> OK
O 2° tira o do 3°, o 3° o do 1º o 4º o próprio -> não serve
O 2° tira o do 3°, o 3° o do 4º, o 4º o do 1º -> OK
O 2° tira o do 4°, o 3º o próprio, o 4° o do 1º -> Não serve
O 2° tira o do 4º, o 3º o do 1º, o 4º o do 3° -> Ok
Total de 3 possibilidades neste caso.
Como o 1º pode ainda tirar o do 3° e do 4°, e nesses casos teremos a mesma situação acima (3 favoráveis em cada), são 9 as possibilidades satisfatórias. 9/24 = 3/8.

Mais uma vez, o que foi observado no caso de 3 participantes, ocorreu. Veja que aqui existe também a possibilidade do 1º tirar o seu próprio nome (que não serve) e de ele tirar o nome que outro participante. Como são 4 participantes, as possibilidades do 1º tirar o nome de outro são 3. Digamos que ele pegue o nome de outro participante, chamado de B. Neste caso, se o participante B tirar o nome do 1º, vão restar 2 nomes e dois participantes. Porém, como no caso de existirem apenas 2 no jogo do amigo secreto, os dois participantes que restaram tem os seus nomes a serem sorteados. Caso o B não pegue o nome do 1º, e pegue o nome de um jogador C. Segue a lógica: se o C pegar o nome do 1º, resta um jogador e um nome (caso do jogo de apenas um participante, já que o nome que sobrou é exatamente o nome do jogador que não sorteou), se ele pegar o nome de um participante D ...


Agora, vou fazer o mesmo que fiz acima, porém de forma genérica, para n participantes.

Já foi visto que o universo de possibilidades é de n!.

Neste caso, para n participantes, temos:
Se o 1° pegar seu nome. já não serve mais -> (n-1)! casos descartados
Se o 1º pegar o nome de outro participante (participante X) [ (n-1) possibilidades ]
Se X pegar o nome do 1º (1 possibilidade) restam (n-2) participantes com seus próprios (n-2) nomes. Neste caso, a probabilidade dos casos favoráveis será P(n-2), já que os nomes não sorteados são exatamente o dos participantes que restaram.

Mas se X pegar o nome de um terceiro (Y) (n-2 possibilidades) obtém-se os mesmos 2 casos:
Y pegar o nome do 1º (1 possibilidade), restando (n-3) participantes e seus (n-3) nomes. P(n-3)
Y pegar outro (Z) (n-3 possibilidades):
Z pegar o nome do 1º (1 possibilidade): P(n-4)
.......
E assim vai.
Assim, teremos que:

P(n) = (n-1)*[P(n-2) + (n-2)*[P(n-3) + (n-3)*[P(n-4) + (n-4)*[P(n-5) + ... + 3*[P(2) + 2*[P(1)]]]...]]]
Da igualdade acima, temos:
P(n-1) = (n-2)*[P(n-3) + (n-3)*[P(n-4) + ... + 2*[P(1)]]]...]]]

Assim:
P(n) = (n-1)*[P(n-2) + P(n-1)]
Lembrando que a probabilidade é Prob(n) = P(n) / n!

A relação P(n) = (n-1)*[ P(n-1) + P(n-2) ] estabelece uma relação de subfatorial.
Assim, dividindo tudo por n! (universo) temos:
(Aconselho ao leitor a acompanhar com um papel e um lápis a partir daqui)

P(n)/n! = (n-1)*{ P(n-1) + P(n-2)] } / n!

P(n)/n! = [(n-1)/n]*{ P(n-1)/(n-1)! + P(n-2)/(n-1)!] }

P(n)/n! = [(n-1)/n]*{ P(n-1)/(n-1)! + [1/(n-1)]*[P(n-2) /(n-2)!] }

Desta forma temos:
Prob(n) = [(n-1)/n]*{ Prob(n-1) + [1/(n-1)]*Prob(n-2) }

Prob(n) = (1 - 1/n )*{ Prob(n-1) + [1/(n-1)]*Prob(n-2) }

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + [1/(n-1)]*Prob(n-2) - (1/n)*[1/(n-1)]*Prob(n-2) ]

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + [(n-1)/n]*[1/(n-1)]*Prob(n-2) ]

Prob(n) = Prob(n-1) - (1/n)*Prob(n-1) + (1/n)*Prob(n-2) ] 

Prob(n) - Prob(n-1) = - (1/n)*Prob(n-1) + [1/n]*[ Prob(n-2) ]

Prob(n) - Prob(n-1) = (-1/n)* [ Prob(n-1) - Prob(n-2) ]

Seja G(n) = Prob(n) - Prob(n-1)

G(n) = (-1/n) G(n-1)

Como:
G(2) = Prob(2) - Prob(1) = 1/2 - 0 = 1/2

G(3) = (-1/3)*(1/2) = -1/6

G(4) = (-1/4)*(1/6) = 1/24
...
G(k) = [(-1)^k] / k!

Assim:

Prob(n) = Prob(1) + [Prob(2) - Prob(1)] + [Prob(3) - Prob(2)] + ... + [Prob(n) - Prob(n-1)]

Prob(n) = 0 + G(2) + G(3) + G(4) + ... + G(n)

Prob(n) = Ʃ{ [(-1)^k] / k! }

Mas, da série de Taylor temos que:
e^x = Ʃ[ ( x^k ) / k! ], se tivermos x = -1, a série será:

e^(-1) = Ʃ{ [ (-1)^k ] / k! } = Prob(n) para n tendendo ao infinito

Logo, Prob(n) = 1/e


Exercício Resolvido - Circunferência e distância de pontos

Sejam A(-4,0) e B(0,8) pontos externos do diâmetro da circunferência de centro no ponto C. A reta que passa por C é perpendicular ao diâmetro AB intercepta o eixo das abcissas no ponto P.Qual a distancia entre os pontos B e P?
a)5
b)6
c)7
d)9
e)10

Solução:
Como temos os pontos A e B diametralmente opostos, a distância entre eles é o valor do diâmetro dessa circunferência.
A distância 'd' entre eles é dada por:

d² = (-4 - 0)² + (0 - 8)² = 16 + 64 = 80
d = 4√5

Assim, o raio dessa circunferência é 2√5 e o raio ao quadrado será 20.
Como a equação geral de uma circunferência é:
(x - xo)² + (y - yo)² = r²
Onde xo e yo são as coordenadas do centro e x e y são as coordenadas dos pontos pertencentes à circunferência, temos:

Para o ponto A:
(-4 - xo)² + (0 - yo)² = 20
16 + 8xo + xo² + yo² = 20
Para o ponto B
(0 - xo)² + (8 - yo)² = 20
xo² + 64 - 16yo + yo² = 20

Assim, como ambos são iguais a 20:
16 + 8xo + xo² + yo² = xo² + 64 - 16yo + yo²
8xo +16yo = 48
Dividindo tudo por 8 para simplificar
xo + 2yo = 6
xo = 6 - 2yo

Substituindo este valor nas equações acima:
xo² + 64 - 16yo + yo² = 20
(6 - 2yo)² + 64 - 16yo + yo² = 20
36 - 24yo + 4yo² + 64 - 16yo + yo² = 20
5yo² - 40yo + 80 = 0
Dividindo tudo por 5 para simplificar
yo² - 8yo + 16 = 0

Aplicando Bhaskara temos:
yo = 4
Logo:
xo = -2
Assim, as coordenadas do ponto central são (-2,4)

Equação da reta que passa por A e B:
No ponto A (-4,0), x = -4 e y = 0
Como a equação de uma reta é do tipo y = ax + b
0 = -4a + b

No ponto B (0,8), x = 0, y = 8
8 = 0*a + b
b = 8
a = 2
y = 2x + 8

O coeficiente angular dessa reta é 2, logo o da reta perpendicular a essa, terá coeficiente angular de -1/2, já que o coeficiente angular de retas perpendiculares possuem sinal contrário e um é o inverso do outro. Mas queremos que essa reta passe por C (-2, 4)
Para essa reta, a equação é do tipo:
y = (-1/2)x + b
Mas passa por C (-2, 4), onde x = -2 e y = 4
4 = (-1/2)*(-2) + b
4 = 1 + b
b = 3

A equação é:
y = (-1/2)x + 3

Esta reta corta o eixo das abcissas (eixo x) quando y = 0. Logo:
0 = (-1/2)x + 3
x = 6
Ponto P = (6,0)

A distância entre os pontos P (6,0) e B (0,8) é:
d² = (6-0)² + (0-8)²
d² = 36 + 64
d² = 100
d = 10

Letra e)

Abaixo o que aconteceu nesse exercício:
Em laranja, a distância 'd' entre os pontos P e B;
Em azul a circunferência;
Em preto, a reta y = 2x + 8 que passa por A e B;
Em cinza, a reta y = (-1/2)x + 3 perpendicular à que passa por A e B passando pelo ponto C e;
Em vermelho, os pontos A, B, C e P.


Exercícios Resolvido - (UFG 06) - Achar o resto da divisão

(UFG 06) O maior número primo conhecido foi descoberto no ano passado por Martin Nowak. Ele é dado por 225.964.951 –  1. (GALILEU, São Paulo, n. 169, ago. 2005. p. 43). Considerando o algoritmo de Euclides para a divisão por 8 desse número, pode-se escrever a equação 225.964.951 –  1 = 8k + r. Então o resto r da divisão por 8 do maior primo conhecido é:       

a) 0       b) 2       c) 5       d) 6       e) 7

Solução:



Assim:



Substituindo



Como



Logo:



Assim, temos que

.

Letra e)


Exercício Resolvido - Conjuntos

Em uma sala de aula, 21 alunos falam francês, 20 não falam inglês, 32 só falam inglês e 45 só falam um desses dois idiomas. Pergunta-se:
a) Qual o total de alunos da sala?
b) Quantos falam os dois idiomas?

Solução:
Então temos os seguintes casos:
Alunos que falam somente francês: Vou chamar de F
Alunos que falam somente inglês: Vou chamar de I
Alunos que falam os dois idiomas: Vou chamar de IF
Alunos que não falam nenhum idioma: Vou chamar de N

F + IF = 21, pois 21 falam francês
F + N = 20, pois 20 não falam ingês
I = 32, pois 32 falam somente inglês
F + I = 45, pois 45 falam um, e apenas um, desses dois idiomas.

Assim:
F + I = 45
I = 32
Temos que F = 13

F = 13
F + IF = 21
IF = 8

F = 13
F + N = 20
N = 7

Assim, o total de aluno é:
F + I + IF + N = 13 + 32 + 8 + 7 = 60 alunos

IF = 8, logo 8 falam os dois idiomas.


Exercícios Resolvido - Petrobrás - Profissional Júnior Formação Administração - Questão 27

Se α e β são dois ângulos complementares, então o determinante da matriz:
é igual a:


(A) -6
(B) -2
(C) 0
(D) 2
(E) 6

Solução:
- Ângulos complementares são ângulos que somados tem como resultado 90°
Como o determinante dessa matriz será:
Sen(α)Cos(β)*2*0 + 1*1*2 + (-1)*Sen(β)Cos(α)*4 - (-1)*2*2 - 1*4*Sen(α)Cos(β) - 0*1*Sen(β)Cos(α)
= 0 + 2 - 4Sen(β)Cos(α) + 4 - 4Sen(α)Cos(β) - 0 = 6 - 4Sen(β)Cos(α) - 4Sen(α)Cos(β)


Mas, das propriedades trigonométricas sabe-se que:
Sen(a + b) = Sen(a)Cos(b) + Sen(b)Cos(a)


Logo:
Det = 6 - 4Sen(β)Cos(α) - 4Sen(α)Cos(β) = 6 - 4*[Sen(β)Cos(α) + Sen(α)Cos(β)]
Det = 6 - 4*[Sen(α + β)]
Det = 6 - 4*[Sen(90°)]
Det = 6 - 4*[1] = 6 - 4 = 2


Letra (D)


Exercícios Resolvido - Petrobrás - Profissional Júnior Formação Administração - Questão 26

Considere a sequência numérica an, ∈ ℕ definida por:

O termo an pode ser obtido através de:
(A) n∙log(2)
(B) (n+2)∙log(2)
(C) [n∙(n+1)/2]∙log(2)
(D) log(2ⁿ-1)
(E) log(2⁺¹-2)


Solução:
Utilizando a seguinte propriedade de logaritmo:
log(xⁿ) = n∙log(x), podemos dizer que:

an+1 = an + log(2⁺¹)
an+1 = an + (n+1)log(2)

Assim:
an = an-1 + n∙log(2)
Substituindo:

an+1 =  an-1 + n∙log(2)  + (n+1)log(2)

Se continuássemos com estas substituições:
an-1 = an-2 + (n-1)∙log(2)

an+1 =  an-2 + (n-1)∙log(2)  + n∙log(2)  + (n+1)log(2)
...

an+1 =  a1 + 2∙log(2) + 3∙log(2) + 4∙log(2) + ... + (n-1)∙log(2)  + n∙log(2)  + (n+1)log(2)
an+1 =  a1 + log(2)∙[2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
Como a1 = log(2)
an+1 =  log(2) + log(2)∙[2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
an+1 =  log(2)∙[1 + 2 + 3 + 4 + ... + (n-1) + n  + (n+1)]
Ainda, o termo an, que é o que interssa nesse exercício, é obtido por:
an =  log(2)∙[1 + 2 + 3 + 4 + ... + (n-1) + n ]
Perceba que dentro do [] existe a soma de uma PA (aula sobre Progressão Aritmética), que é dada pela fórmula:
S = (a1 + an)*(n/2) = (1 + n)*(n/2)
Assim,
an =  log(2)∙(1 + n)*(n/2)



Exercício resolvido - IME CG 2009/2010 - Estática

Duas barras AC e BD estão apoiadas e ligadas por pinos sem atrito, conforme a figura. As barras, de 4 m de comprimento, são feitas de material homogêneo e possuem massa linear igual a  5 kg/m. Sabendo que as barras formam um sistema em equilíbrio no momento em que o ponto  D é tracionado em  300 N e que, no meio da barra  AC, é colocado um corpo com 20 litros de volume, determine as reações horizontal e vertical, em Newtons, nos pontos A e B.
  Dados:
aceleração gravitacional = 10 m/s²
3 = 1,7
massa específica do corpo = 2000 kg/m³

Solução:
Como o sistema esta em equilíbrio temos que:
∑F = 0 (Somatório da forças = 0)
∑M = 0 (Somatório dos momentos = 0)

Para facilitar, vou decompor a força 300 N na direção horizontal e vertical. Além disso, como o corpo na barra AC tem 20 litros de volume (ou 0,02 m³) e que sua massa específica é de 2000 kg/m³, temos que sua massa é:
0,02*2000 = 40 kg
Como a aceleração da gravidade é 10 m/s²
Peso do corpo = 400 N.

Ambas as barras tem massa de 5 kg/m* 4 m = 20 kg, pesando 200 N cada uma.

Assim temos:
Observe que no ponto C existem 4 forças, 2 delas são a reação na barra AC, e duas na barra BD

Neste tipo de exercício, é interessante 'separarmos' as barras, já que cada uma delas deve estar em equilíbrio  pois não estão se movendo e nem girando.
Estudo da barra AC:


Equilíbrio das forças verticais:
RCVAC + 200 + 400 + RAV = 0
RCVAC = - 600 - RAV

Equilíbrio das forças horizontais:
RAH - RCHAC = 0
RAH = RCHAC

Momento em relação a qualquer ponto é nulo.
Vou fazer em relação ao ponto C, já que não estou interessado em calcular as forças em C, e sim em A e B:
RAV*4 + 400*2 + 200*2 = 0
RAV*4 = -1200

Disso, temos que:
RCVAC = -600 - RAV = - 600 + 300 = - 300 N

Obs.: É importante perceber que as forças que atuam no ponto C quando estudamos apenas a barra AC tem um sentido, porém ao estudarmos a barra BD, estas forças terão sentido contrário, já que serão a reação da barra AC na barra BD. Assim como os vetores dessas forças estão em sentidos contrários, RCVAC = RCVBD e RCHAC = RCHBD.
Estudo da barra BD:
Equilíbrio das forças verticais:
RBV - 200 +  RCVBD + 300*sen(30°) = 0
RBV - 200 +  RCVBD + 150 = 0
RBV +  RCVBD = 50

Equilíbrio das forças horizontais:
RBH + RCHBD + 300*cos(30°) = 0
RBH + RCHBD + 255 = 0
RBH + RCHBD = -255

Momento resultante em relação a qualquer ponto é nulo:
Novamente irei calcular em relação ao ponto C:
300*cos(30°)*1 - RBH*3 = 0
3RBH = 255
RBH = 85 N

Como RBH + RCHBD = -255
RCHBD = - 340 N

Falta resolver:
RAH = RCHAC
RBV +  RCVBD = 50
Sabemos que:
RCVBD = RCVAC = - 300 = - 300 N, logo, RCVBD = - 300 N
RCHBD = RCHAC = -340 N, logo, RCHAC = - 340 N

Com isso
RAH = - 340 N
RBV - 300 = 50
RBV = 350 N
Assim:
Forças em A:
RAV = -300 N
RAH = -340 N
Forças em B:
RBV = 350 N
RBH = 85 N

PS: Agora sim, certamente esta correto este exercício. Depois de algumas correções e momentos de reflexão (rs), esta é a resposta. Podem confiar..


Exercício Resolvido - Integrais

Solução de integrais

Calcule as seguintes integrais:

1) ∫ (sen2x/3cos³) dx
2) ∫ [(x²-10x+24)/(x-4)] dx
3) ∫ [(1+cos²x)/(2cos²x)] dx
4) ∫ [(x-1)/(1-√x)] dx
5) ∫ [(4x²+2x⁴)/(x²+1)] dx

Solução:
1)
Sabendo que
Sen(2x) = 2*Sen(x)Cos(x)
Podemos simplificar
Sen(2x) / 3*Cos³(x) = 2*Sen(x) / 3*Cos²(x)
Como se trata de uma integral, podemos tirar o 2/3 do integrando, pois ele não depende de x.
Ficando:
(2/3)∫[Sen(x) / Cos²(x)]dx

Agora, perceba que a derivada de Cos(x) é -Sen(x)dx, ou seja, substituindo Cos(x) por 'u', temos a seguinte integral:
(2/3)∫ - du / u² = (2/3)*(1/u) = (2/3)*[1/Cos(x)] = (2/3)*Sec(x)

Logo:
∫ [Sen(2x) / 3*Cos³(x)]dx = (2/3)*Sec(x) + k

2)
∫ [(x² - 10x + 24) / (x-4)]dx
Como x² - 10x + 24 pode ser escrito (x-4)*(x-6), temos
∫ [(x² - 10x + 24) / (x-4)]dx = ∫ [(x-4)*(x-6) / (x-4)]dx = ∫ (x-6)dx, para x ≠ 4
∫ (x-6)dx = x²/2 - 6x + k, onde k é uma constante.

3)
∫ [(1+cos²x)/(2cos²x)] dx
Abrindo a soma, temos:
(1+cos²x)/(2cos²x) = 1 / [2Cos²(x)] + Cos²(x) / [2Cos²(x)] = (1/2)*[1/Cos²(x)] + 1/2 = (1/2)*[Sec²(x) + 1]
Mas,
Assim:
∫ [(1+cos²x)/(2cos²x)] dx = (1/2)*∫ [Sec²(x) + 1]dx = (1/2)*∫ Sec²(x)dx + (1/2)*∫ 1dx =
= (1/2)*∫ Sec²(x)dx + (1/2)*x + k1

Resta calcular: ∫ Sec²(x)dx
Para isso, devemos utilizar algumas propriedades trigonométricas:
Tan²(x) + 1 = Sec²(x)

Observando que:
Sec²(x) = Sen²(x) / Cos²(x) + 1
Sec²(x) = [Sen²(x) + Cos²(x)] / Cos²(x)
Mas:
[Sen²(x) + Cos²(x)] / Cos²(x) é a derivada de [Sen(x) / Cos(x)] = Tan(x)

Logo:
∫ Sec²(x)dx = Tan(x) + k2
Assim:
∫ [(1+cos²x)/(2cos²x)] dx = (1/2)*∫ Sec²(x)dx + (1/2)*x + k1 = (1/2)*[Tan(x) + k2 + x + k1]
Adotando que k1 + k2 = k
∫ [(1+cos²x)/(2cos²x)] dx = 0,5*[Tan(x) + x + k]

4)
∫ [(x-1)/(1-√x)] dx
Para iniciar esse exercício é interessante perceber que:
(x-1) = [√(x) - 1]*[√(x) + 1]

Assim:
∫ [(x-1)/(1-√x)] dx = ∫ [√(x) + 1] dx = ∫ √(x) dx + ∫ 1dx = (2/3)*√(x³) + x + k

5)
∫ [(4x²+2x⁴)/(x²+1)] dx = ∫ [2x²*(2+x²)/(x²+1)] dx = ∫ {2x²*[1+(1+x²)]/(x²+1)} dx =
= ∫ {[2x² + 2x²*(1+x²)]/(x²+1)} dx = ∫ 2x² / (x² + 1) dx + ∫2x²*(1+x²)/(x²+1)} dx =
= ∫ 2x² / (x² + 1) dx + ∫2x² dx

Calculando ∫2x² dx
∫2x² dx = (2/3) x³ + k1
Calculando
∫ 2x² / (x² + 1) dx
Fazendo uma substituição de variável:
x = Tan(u)
dx = Sec²(u) du

∫ 2x² / (x² + 1) dx = ∫ {2Tan²(u) / [Tan²(u) + 1]}*[Sec²(u) du]

Mas
1 + Tan²(u) = Sec²(u)

∫ {2Tan²(u) / [Tan²(u) + 1]}*[Sec²(u) du] = ∫ {2Tan²(u) / Sec²(u)}*[Sec²(u) du] = ∫ 2Tan²(u) du

Mas sabendo que Tan²(u) = Sen²(u) / Cos²(u)
E que
Sen²(u) + Cos²(u) = 1, logo, Sen²(u) = 1 - Cos²(u)
Tan²(u) = Sen²(u) / Cos²(u) = [1 - Cos²(u)] / Cos²(u) = 1/Cos²(u) - 1 = Sec²(u) - 1

Assim:
∫ 2Tan²(u) du = 2*∫ [Sec²(u) - 1] du = 2* [ ∫ Sec²(u) du - ∫ 1 du] = 2* [ ∫ Sec²(u) du - (u + k2)]

Mas já foi visto que
∫ Sec²(u) du = Tan(u) + k3

Logo
∫ 2Tan²(u) du =2Tan(u) + 2k3 - 2u - 2k2

E sabendo que u = ArcTan(x)
2Tan(u) + 2k3 - 2u - 2k2 = 2x + 2k3 - 2ArcTan(x) - 2k2
Logo:
∫ [(4x²+2x⁴)/(x²+1)] dx = (2/3) x³ + k1 + 2x + 2k3 - 2ArcTan(x) - 2k2

Para facilitar, podemos chamar k1 + 2k3 - 2k2 = k
∫ [(4x²+2x⁴)/(x²+1)] dx = (2/3) x³ + 2x - 2ArcTan(x) + k


Exercício resolvido - Cônica em 3 dimensões

Resolva a função quádrica, classifique-a e esboce-a

x² y² z² 14x 6y - 8z 10 = 0

Solução:
Para verificar esse tipo de questão, é interessante eliminarmos os termos que não são quadráticos, ou seja, os termos dependentes de x, y e z. Para isso, fazemos uma substituição de variável:

x = u + a
y = v + b
z = w + c

Ficando:
(u + a)² + (v + b)² + (w + c)² - 14*(u + a) + 6*(v + b) - 8*(w + c) + 10 = 0
Desenvolvendo:
u² + 2au + a² + v² + 2bv + b² + w² + 2wc + c² - 14u - 14a + 6v + 6b - 8w - 8c + 10
Ficando:
u² + v² + w² + u*(2a - 14) + v*(2b + 6) + w*(2c - 8) + (a² + b² + c² - 14a + 6b - 8c + 10) = 0
Para zerar os termos u, v e w basta:
2a - 14 = 0
a = 7
2b + 6 = 0
b = -3
2c - 8 = 0
c = 4
Com estes valores de a, b e c, calculamos:
(a² + b² + c² - 14a + 6b - 8c + 10) = [7² + (-3)² + 4² - 14*7 + 6*(-3) - 8*4 + 10] = 
= 49 + 9 + 16 - 98 - 18 - 32 + 10 = -64

Desta forma:
u² + v² + w² + u*(2a - 14) + v*(2b + 6) + w*(2c - 8) + (a² + b² + c² - 14a + 6b - 8c + 10) = 0
Fica:
u² + v² + w² - 64 = 0
u² + v² + w² = 64

Ou seja, é uma esfera de raio 64 = 8.

Agora, para saber o ponto onde essa esfera é centrada devemos pensar da seguinte forma:
Inicialmente nós estávamos trabalhando com x, y e z. Mudamos para u, v e w. Perceba que para mudar do primeiro sistema de referência para o segundo, apenas somamos constantes (a, b e c), ou seja, deslocamos os eixos x, y e z para a esquerda ou direita, para cima ou para baixo, para frente ou para trás, veja o que foi feito:
x² y² z² 14x 6y - 8z 10 = 0, é o mesmo que
u² + v² + w² - 64 = 0. 
Mas
u = x - a
u = x - 7
v = y - b
v = y + 3
w = z - c
w = z - 4
Assim:
u² + v² + w² - 64 = 0, é o mesmo que
(x-7)² + (y+3)² + (z-4)² = 64

Ou seja, o centro dessa esfera é o ponto:
x = 7
y = -3
z = 4
(7, -3, 4)

Logo, este é uma equação de uma esfera com raio 8 e centro no ponto (7, -3, 4)

Gráfico:



Exercício Resolvido - Quantidade de movimento

Duas bolas de boliche aproximam-se, ambas em movimento sobre um trilho. A primeira, de massa m1, se desloca com velocidade v1 e a segunda, de massa m2, com v2. Qual a velocidade do centro de massa? Qual a velocidade do centro de massa do sistema após as bolas colidirem elasticamente? Qual é a quantidade de movimento do sistema antes e qual passa a ser após a colisão e por quê?

Solução:
1ª pergunta:
Considerando cada uma das bolas como sendo uma partícula onde sua massa esta concentrada em seu centro de massa, temos que para calcular o centro de massa do sistema, devemos utilizar a fórmula:


Onde CM é a localização do centro de massa, m1 e m2 as massas de cada uma das bolas e r1 e r2 as coordenadas da posição do centro de massa de cada uma das bolas.

Assim, devemos supor uma posição inicial para cada uma das bolas, tal procedimento não vai alterar o resultado, já que será irrelevante.

Posição da bola 1: Supondo que a bola 1 parte do ponto (0,0) e se desloca em direção à bola 2, podemos dizer que não há alteração da posição das bolas na direção y, e sim, somente na x. Logo, a posição da bola 1 em qualquer tempo pode ser descrita por:
r1 = (v1*t, 0 ), onde v1 é a velocidade da bola 1.

O mesmo deve ser feito para a bola 2
r2 = (v2*t, 0). 

CM = [m1*(v1*t, 0 ) + m2*(v2*t, 0)] / (m1 + m2)
CM = (m1*v1*t + m2*v2*t , 0) / (m1 + m2)
CM = t*(m1*v1 + m2*v2 , 0) / (m1 + m2)
Ou seja, o CM tem deslocamento somente no eixo x, pois o deslocamento no eixo y é nulo.
CM = t*(m1*v1 + m2*v2) / (m1 + m2)
Como o deslocamento é em apenas uma direção (x), basta dividir CM por t e obtemos a velocidade do centro de massa

Logo, a velocidade do centro de massa será VCM = CM/t = (m1*V1 + m2*V2) / (m1 + m2)

2ª Pergunta:
Em qualquer choque, há conservação da quantidade de movimento.
Conservação da quantidade de movimento:
m1*V1 + m2*V2 = m1*V1depois + m2*V2depois
Como a velocidade do centro de massa depois do choque será:
VCM = (m1*V1depois + m2*V2depois) / (m1 + m2) = (m1*V1 + m2*V2) / (m1 + m2). Ou seja, não há variação da velocidade do centro de massa do sistema.

3ª Pergunta:
A quantidade de movimento do sistema antes é m1*V1 + m2*V2 e depois passa a ser 
m1*V1depois + m2*V2depois, porém elas são iguais pois não há variação da quantidade de movimento.
O motivo disso é a segunda lei de newton que fala que a força é a variação infinitesimal da quantidade de movimento. Ou seja, para que ocorra variação na quantidade de movimento de qualquer corpo, é necessário que exista uma força externa agindo nele. Neste caso, considerando o sistema formado pelas duas bolas, nenhuma força externa age nelas e sim, somente o choque entre elas, porém esta força é interna. logo, a quantidade de movimento nunca vai se alterar em um choque, seja ele elástico, inelástico ou perfeitamente inelástico.