O que é um espaço vetorial?

Definição de um espaço vetorial

Definição: Um conjunto $V\, \neq \, \emptyset$ é um espaço vetorial sobre $ \Re $ se, e somente se, satisfizer as seguintes condições:

I - Existir uma adição em $V$ com as seguintes propriedades:
a) $u\, +\, v\, = \, v\, + \, u, \, \forall u , \, v \, \in \, V$

b) $u \, + \, (v \, + \, w) \, = \, (u \, + \, v) \, + \, w, \forall u, \, v , \, w \in \, V$
c) Existe em $V$ um elemento neutro para essa adição, simbolizado por $o$, onde:
$$u \, + \, o \, = \, u, \forall \, u \, \in \, V$$
d) Para todo elemento $u$ de $V$, existe seu oposto onde:
$$u \, + \, (-u) \, = \, o$$

II - Existir uma multiplicação $\Re \times V$ em $V$, ou seja, para todo par ($\alpha, u$) onde $\alpha \, \in \, \Re$ e $u \, \in \, V$, existe um, e apenas um elemento $v$ de $V$ tal que $\alpha \times u \, = \, v$, e para essa multiplicação tem-se, $ \forall \, \alpha, \, \beta \, \in \, \Re$:
a) $\alpha ( \beta u) \, = \, (\alpha \beta)u$
b) $(\alpha \, + \, \beta)u \, = \, \alpha u \, + \, \beta u$
c) $\alpha ( u \, + \, v) \, = \, \alpha u \, + \, \alpha v$

Portanto, qualquer que seja a "soma" e a "multiplicação" definidas em um conjunto tais que satisfaçam as condições acima, teremos que o conjunto é um espaço vetorial segundo esta soma e esta multiplicação.

Fonte: CALLIOLI, Carlos A.; DOMINGUES, Hygino H.; COSTA, Roberto C. F., Álgebra Linear e Aplicações, São Paulo, Atual, 6ª ed, 1990.




0 comentários:

Postar um comentário