Exercício Resolvido - Limite e função

Seja o conjunto de funções do tipo fn(x) = -(1/kn²)x + 2/kn, onde kn assume qualquer valor real positivo. Determine qual é a função g(x) formada pela intersecção de infinitas retas do tipo fn, conforme figura a seguir.
Limite e função


Solução:
Veja que na figura acima as retas do gráfico foram para os valores de k = n/3, para n = 1,2,3,...,12, conforme figura que segue:


Quando estas retas são sobrepostas é que é possível ver a tendência à formação de uma outra curva, neste caso ilustrada em preto na figura ilustrativa do exercício. Porém, é importante perceber que não é simplesmente a intersecção das retas que gera esta curva, mas sim a intersecção das retas mais próximas, ou seja, a intersecção da reta para k = 1/3 com a reta para k = 4 não fica na fronteira formadora da curva desejada. Além disso, a formação da curva acontece à medida que os valores de k se aproximam. Perceba na figura abaixo que, na verdade, a curva g(x) não passa pelos pontos de intersecção das retas, mas a medida que os valores de k se tornam mais próximos, o ponto de intersecção passa a se aproximar de g(x).


Neste caso, as retas foram formadas para k1 = 2 e k2 = 2/3.
Para k1 = 0,95 e k2 = 1,05 foi preciso dar um zoom na figura para poder ver exatamente o que acontece, pois o ponto de intersecção das retas se aproxima muito da curva em preto:


Veja que o ponto esta mais próximo, mas a curva g(x) ainda não passa por ele. Na verdade o ponto de intersecção das retas será um ponto da curva g(x) apenas no limite para k1 tendendo a k2.

Neste caso então, vou supor que k2 = k1 + eps, onde 'eps' é um valor muito pequeno, depois irei fazer ele tender a zero. Assim, substituindo na equação fn(x) temos:


Mas no ponto de intersecção, f1(x) = f2(x)


Assim, calculamos o valor de x no ponto de intersecção. Chamarei de xo:


Fazendo o limite para eps tendendo a zero, temos:
Substituindo na equação f1 para x = xo = k1 temos:
Obs.: Se xo = k1 fosse substituído na função f2, para k2 = k1 + eps com eps tendendo a zero, o resultado seria o mesmo, já que estamos procurando o ponto de intersecção.

Assim, temos que no limite, para k1 tendendo a k2 (ou seja, para eps tendendo a zero) o ponto de intersecção das curvas é dado pelo par ordenado (k1, 1/k1). Ou seja, y = 1/x. Logo, a função g(x) definida pelas retas é:

g(x) = 1/x

Veja a seguir o gráfico com 100 curvas e, no gráfico da direita em preto, a curva g(x) = 1/x




Exercício Resolvido - Inteiros de Gauss

O exercício resolvido neste post será o Problema 1 do capítulo "Inteiros de Gauss" do arquivo disponível no link http://www.obm.org.br/export/sites/default/revista_eureka/docs/artigos/gauss.doc escrito por Guilherme Fujiwara.
Deste arquivo irei transcrever algumas definições e teoremas, conforme eles forem sendo usados, porém não serão disponibilizadas aqui as provas dos teoremas. Estas podem ser vistas no próprio documento.

Problema 1. Determine todos os pares x, y Î Z tal que y³ = x² + 1.


Solução:
y³ = x² + 1
y³ = (x + i)*(x - i)
onde
i² = -1.

INTEIROS DE GAUSS
Definimos o conjunto Z[i] dos inteiros de Gauss como Z[i] = {a + bi | a, b Є Z}, onde (i² = –1).
Fatoração única
Todo inteiro z de Gauss com norma maior que 1 pode ser escrito como o produto de um ou mais primos de Gauss. Além disso, esta fatoração é única.

Desta forma, como desejamos soluções pertencentes a Z para x e y, então (x + i) e (x - i) são inteiros de Gauss. Portanto, pela propriedade da fatoração única, cada um deles pode ser escrito como o produto de primos de Gauss, onde um primo de Gauss é definido por ser um inteiro de Gauss que não pode ser escrito pelo produto de dois inteiros de Gauss não unitários.

Assim:

(x + i) = (α1)¹*(α2)²*(α3)³*...*(αk1)ᵏ¹
(x - i) = (β1)ᵇ¹*(β2)ᵇ²*(β3)ᵇ³*...*(βk2)ᵇᵏ²
onde αn e βn são primos de Gauss e an e bn são os expoentes dos termos da fatoração.

Da fatoração acima, será necessário saber se existe algum α ou β iguais, ou seja, se algum dos primos da fatoração de (x + i) é igual a algum dos primos da fatoração de (x - i). O que se pode deduzir é que, se existe algum termo das fatorações de ambos que sejam iguais, então este primo também é um termo na fatoração de qualquer combinação aritmética (soma, subtração, divisão e multiplicação) entre eles.
Fazendo:
(x + i) - (x - i) = 2i
(x + i) + (x - i) = 2x
Portanto, caso exista algum α que seja igual a algum β, este é 2 (ou 2i, ou -2, ou -2i), já que as unidades dos inteiros de Gauss são 1, -1, i e -i.

Obs.: É importante perceber que o 2 não é, necessariamente, um termo da fatoração. O que se ressalta aqui é que se o 2 for termo da fatoração de um deles, então é dos dois e neste caso este seria o único termo em comum na fatoração de (x + i) e (x - i). Logo, qualquer α é diferente de qualquer β, exceto se um deles for 2.

Porém, da divisibilidade temos que:

Divisibilidade
Dizemos que para a, b Є Z[i], a|b (lê-se a divide b) se ƎЄ Z[i] tal que b = ac.

Logo, se 2ᵏ é fator da decomposição de (x + i), então existe um c = (a + bi) (inteiro de Gauss) tal que:
x + i = 2ᵏ*(a + bi)
x + i = 2ᵏ*a + 2ᵏ*bi
Ou seja:
2ᵏ*b = 1. Mas como b é um inteiro, então k = 0.

Portanto, a equação inicial fica:
y³ = [(α1)¹*(α2)²*(α3)³*...*(αk1)ᵏ¹]*[(β1)ᵇ¹*(β2)ᵇ²*(β3)ᵇ³*...*(βk2)ᵇᵏ²]

Porém, para que y seja inteiro, cada um dos expoentes a1, a2, a3, ..., ak1 e b1, b2, b3, ..., bk2 devem ser múltiplos de 3, já que todos os primos de Gauss α e β são diferentes. Desta forma podemos escrever a equação:
y³ = [(α1)¹'*(α2)²'*(α3)³'*...*(αk1)ᵏ¹'*(β1)ᵇ¹'*(β2)ᵇ²'*(β3)ᵇ³'*...*(βk2)ᵇᵏ²']³
Além disso:
(x + i) =  [(α1)¹'*(α2)²'*(α3)³'*...*(αk1)ᵏ¹']³
e
(x - i) = [(β1)ᵇ¹'*(β2)ᵇ²'*(β3)ᵇ³'*...*(βk2)ᵇᵏ²']³
Usando:
1)¹'*(α2)²'*(α3)³'*...*(αk1)ᵏ¹' = u + vi
Onde u + vi é um inteiro de Gauss.

Assim:
(x + i) = (u + vi)³ = [u³ + 3u²vi + 3u(vi)² + (vi)³] = u³ + 3u²vi - 3uv² - v³i = (u³ - 3uv²) + i*(3u²v - v³)
Então:
(x + i) = (u³ - 3uv²) + i*(3u²v - v³)
e
(x - i) = (u³ - 3uv²) - i*(3u²v - v³)
Logo:
3u²v - v³ = 1
3u² - v² = 1/v

Porém, como u é um inteiro e v também é um inteiro, v só pode ser ±1, caso contrário |1/v| < 1, o que não é uma solução possível para 3u² - v² sendo u e v inteiros.

Assim:
Para v = 1:
3u² - 1 = 1
u² = 3/2
O que não é possível, pois u é inteiro.

Para v = -1
3u² - 1 = -1
u = 0
Ok.

Logo:
(x + i) = (u³ - 3uv²) + i*(3u²v - v³) = 0 + i
Ou seja
x = 0

Neste caso
y³ = 0² + 1
y = 1

Portanto, este exercício só admite uma solução:
x = 0
y = 1


Exercício Resolvido - Desafio

Ana tem o dobro da idade que Márcia tinha quando Ana tinha a idade que Márcia tem. Sabendo que a soma das idades delas é 42, qual é a idade de Ana e de Márcia?

Solução:

Este exercício parece ser fácil, mas a sua dificuldade esta em conseguir entendê-lo.
Um método que pode facilitar é equacioná-lo de "trás pra frente".

Seja 'A' a idade de Ana e M a idade de Márcia. Então, temos do exercício, indo de "trás pra frente" que:
A + M = 42

"... quando Ana tinha a idade que Márcia tem". Ou seja, Ana é mais velha que Márcia. Chamarei a diferença de idade delas de 'X'.
A - M = X
Ana tinha a idade de Márcia há 'X' anos atrás, e esta idade era de 'A - X'.

"...idade que Márcia tinha". Nesta época, Márcia tinha 'M - X' anos de idade. Chamarei esta idade de Márcia de 'Ma'. Então 'Ma = M - X'

Porém o exercício fala que Ana, hoje, tem o dobro da idade que Márcia tinha, ou seja:
A = 2*Ma

Agora, basta substituir:
Ma = M - X
Assim:
A = 2*(M - X) = 2M - 2X

Mas 'X = A - M'
Então:
A = 2M - 2*(A - M) = 2M - 2A + 2M
3A = 4M

Como 'A + M = 42', temos que:
A = 42 - M

Substituindo
3*(42 - M) = 4M
126 - 3M = 4M
7M = 126
M = 18

A = 42 - 18
A = 24

Ana tem 24 anos e Márcia tem 18 anos.

PS: Agora, com o exercício resolvido, é fácil de entendê-lo. Veja.
Quando Ana tinha a idade de Márcia (ou seja, quando Ana tinha 18 anos), Márcia, claro, tinha 12 anos. A idade de Ana hoje é 24 anos, o dobro de 12.