Exercício Resolvido - Inteiros de Gauss

O exercício resolvido neste post será o Problema 1 do capítulo "Inteiros de Gauss" do arquivo disponível no link http://www.obm.org.br/export/sites/default/revista_eureka/docs/artigos/gauss.doc escrito por Guilherme Fujiwara.
Deste arquivo irei transcrever algumas definições e teoremas, conforme eles forem sendo usados, porém não serão disponibilizadas aqui as provas dos teoremas. Estas podem ser vistas no próprio documento.

Problema 1. Determine todos os pares x, y Î Z tal que y³ = x² + 1.


Solução:
y³ = x² + 1
y³ = (x + i)*(x - i)
onde
i² = -1.

INTEIROS DE GAUSS
Definimos o conjunto Z[i] dos inteiros de Gauss como Z[i] = {a + bi | a, b Є Z}, onde (i² = –1).
Fatoração única
Todo inteiro z de Gauss com norma maior que 1 pode ser escrito como o produto de um ou mais primos de Gauss. Além disso, esta fatoração é única.

Desta forma, como desejamos soluções pertencentes a Z para x e y, então (x + i) e (x - i) são inteiros de Gauss. Portanto, pela propriedade da fatoração única, cada um deles pode ser escrito como o produto de primos de Gauss, onde um primo de Gauss é definido por ser um inteiro de Gauss que não pode ser escrito pelo produto de dois inteiros de Gauss não unitários.

Assim:

(x + i) = (α1)¹*(α2)²*(α3)³*...*(αk1)ᵏ¹
(x - i) = (β1)ᵇ¹*(β2)ᵇ²*(β3)ᵇ³*...*(βk2)ᵇᵏ²
onde αn e βn são primos de Gauss e an e bn são os expoentes dos termos da fatoração.

Da fatoração acima, será necessário saber se existe algum α ou β iguais, ou seja, se algum dos primos da fatoração de (x + i) é igual a algum dos primos da fatoração de (x - i). O que se pode deduzir é que, se existe algum termo das fatorações de ambos que sejam iguais, então este primo também é um termo na fatoração de qualquer combinação aritmética (soma, subtração, divisão e multiplicação) entre eles.
Fazendo:
(x + i) - (x - i) = 2i
(x + i) + (x - i) = 2x
Portanto, caso exista algum α que seja igual a algum β, este é 2 (ou 2i, ou -2, ou -2i), já que as unidades dos inteiros de Gauss são 1, -1, i e -i.

Obs.: É importante perceber que o 2 não é, necessariamente, um termo da fatoração. O que se ressalta aqui é que se o 2 for termo da fatoração de um deles, então é dos dois e neste caso este seria o único termo em comum na fatoração de (x + i) e (x - i). Logo, qualquer α é diferente de qualquer β, exceto se um deles for 2.

Porém, da divisibilidade temos que:

Divisibilidade
Dizemos que para a, b Є Z[i], a|b (lê-se a divide b) se ƎЄ Z[i] tal que b = ac.

Logo, se 2ᵏ é fator da decomposição de (x + i), então existe um c = (a + bi) (inteiro de Gauss) tal que:
x + i = 2ᵏ*(a + bi)
x + i = 2ᵏ*a + 2ᵏ*bi
Ou seja:
2ᵏ*b = 1. Mas como b é um inteiro, então k = 0.

Portanto, a equação inicial fica:
y³ = [(α1)¹*(α2)²*(α3)³*...*(αk1)ᵏ¹]*[(β1)ᵇ¹*(β2)ᵇ²*(β3)ᵇ³*...*(βk2)ᵇᵏ²]

Porém, para que y seja inteiro, cada um dos expoentes a1, a2, a3, ..., ak1 e b1, b2, b3, ..., bk2 devem ser múltiplos de 3, já que todos os primos de Gauss α e β são diferentes. Desta forma podemos escrever a equação:
y³ = [(α1)¹'*(α2)²'*(α3)³'*...*(αk1)ᵏ¹'*(β1)ᵇ¹'*(β2)ᵇ²'*(β3)ᵇ³'*...*(βk2)ᵇᵏ²']³
Além disso:
(x + i) =  [(α1)¹'*(α2)²'*(α3)³'*...*(αk1)ᵏ¹']³
e
(x - i) = [(β1)ᵇ¹'*(β2)ᵇ²'*(β3)ᵇ³'*...*(βk2)ᵇᵏ²']³
Usando:
1)¹'*(α2)²'*(α3)³'*...*(αk1)ᵏ¹' = u + vi
Onde u + vi é um inteiro de Gauss.

Assim:
(x + i) = (u + vi)³ = [u³ + 3u²vi + 3u(vi)² + (vi)³] = u³ + 3u²vi - 3uv² - v³i = (u³ - 3uv²) + i*(3u²v - v³)
Então:
(x + i) = (u³ - 3uv²) + i*(3u²v - v³)
e
(x - i) = (u³ - 3uv²) - i*(3u²v - v³)
Logo:
3u²v - v³ = 1
3u² - v² = 1/v

Porém, como u é um inteiro e v também é um inteiro, v só pode ser ±1, caso contrário |1/v| < 1, o que não é uma solução possível para 3u² - v² sendo u e v inteiros.

Assim:
Para v = 1:
3u² - 1 = 1
u² = 3/2
O que não é possível, pois u é inteiro.

Para v = -1
3u² - 1 = -1
u = 0
Ok.

Logo:
(x + i) = (u³ - 3uv²) + i*(3u²v - v³) = 0 + i
Ou seja
x = 0

Neste caso
y³ = 0² + 1
y = 1

Portanto, este exercício só admite uma solução:
x = 0
y = 1


Exercício Resolvido - Desafio

Ana tem o dobro da idade que Márcia tinha quando Ana tinha a idade que Márcia tem. Sabendo que a soma das idades delas é 42, qual é a idade de Ana e de Márcia?

Solução:

Este exercício parece ser fácil, mas a sua dificuldade esta em conseguir entendê-lo.
Um método que pode facilitar é equacioná-lo de "trás pra frente".

Seja 'A' a idade de Ana e M a idade de Márcia. Então, temos do exercício, indo de "trás pra frente" que:
A + M = 42

"... quando Ana tinha a idade que Márcia tem". Ou seja, Ana é mais velha que Márcia. Chamarei a diferença de idade delas de 'X'.
A - M = X
Ana tinha a idade de Márcia há 'X' anos atrás, e esta idade era de 'A - X'.

"...idade que Márcia tinha". Nesta época, Márcia tinha 'M - X' anos de idade. Chamarei esta idade de Márcia de 'Ma'. Então 'Ma = M - X'

Porém o exercício fala que Ana, hoje, tem o dobro da idade que Márcia tinha, ou seja:
A = 2*Ma

Agora, basta substituir:
Ma = M - X
Assim:
A = 2*(M - X) = 2M - 2X

Mas 'X = A - M'
Então:
A = 2M - 2*(A - M) = 2M - 2A + 2M
3A = 4M

Como 'A + M = 42', temos que:
A = 42 - M

Substituindo
3*(42 - M) = 4M
126 - 3M = 4M
7M = 126
M = 18

A = 42 - 18
A = 24

Ana tem 24 anos e Márcia tem 18 anos.

PS: Agora, com o exercício resolvido, é fácil de entendê-lo. Veja.
Quando Ana tinha a idade de Márcia (ou seja, quando Ana tinha 18 anos), Márcia, claro, tinha 12 anos. A idade de Ana hoje é 24 anos, o dobro de 12.


Exercício Resolvido - Prova CORSAN 2014: Probabilidade

Das dez torneiras da rede de abastecimento de um determinado bairro, três estão com defeito. Se a equipe de manutenção escolher, aleatoriamente, duas torneiras para trocar, a probabilidade de se encontrar pelo menos uma com defeito é de, aproximadamente:

a) 38% 
b) 40% 
c) 45% 
d) 48% 
e) 53%

Solução:

Para resolver esta questão eu irei usar o conceito de que a probabilidade de algo ocorrer é o número de possibilidades dividido pelo universo.
Neste caso temos 10 torneiras e existem X formas diferentes de agrupá-las duas a duas. Este é o nosso universo.

X = 10!/(2!*8!) = 45

Dessas 45 formas distintas de se agrupar 10 torneiras duas a duas, existe uma quantidade de pares formada apenas pelas torneiras boas. Estas são 7, então o número de pares formados apenas por elas é Y.

Y = 7!/(2!*5!) = 21

Logo, dos 45 pares formados pelas torneiras, certamente 21 deles não são formados por torneiras ruins. Com isso, 45 - 21 = 24 são formados por pelo menos uma ruim.

Assim, a probabilidade será:

P = 24/45 = 53,3%, letra e)



Exercício Resolvido - Trigonometria: Relações trigonométricas

Considerando-se a expressão trigonométrica x = 1 + Cos(30°), um dos possíveis produtos que a representam é igual a:

a) 2 cos² 15º 
b) 4 cos² 15º 
c) 2 sen² 30º 
d) 2 cos² 30º 
e) 4 sen² 15º

Solução:
cos(a + b) = cos(a)*cos(b) - sen(a)*sen(b)

Como 30° = 15° + 15°, podemos escrever:

Cos(30°) = Cos(15° + 15°) = Cos(15°)*Cos(15°) - Sen(15°)*Sen(15°) = Cos²(15°) - Sen²(15°)

Ainda, das relações trigonométricas, temos que:

Cos²(a) + Sen²(a) = 1, logo

Sen²(a) = 1 - Cos²(a)

Ou seja:

Sen²(15°) = 1 - Cos²(15°)

Substituindo:

Cos(30°) = Cos²(15°) - [1 - Cos²(15°)]

Cos(30°) = Cos²(15°) - 1 + Cos²(15°)

Cos(30°) = 2*Cos²(15°) - 1

Somando 1 de ambos os lados:

1 + Cos(30°) = 1 + 2*Cos²(15°) - 1

1 + Cos(30°) = 2*Cos²(15°) 

alternativa a)


Exercício Resolvido - Base de um espaço vetorial: Independência linear

Seja E(u,v,x) uma base e F(a,b,c) tal que u = 2a + 2b, v = 2a - b, w = a + b - 5c. Prove que F é base.

Solução:
Primeiro, precisamos saber o que é uma base?
Sem muitos critérios matemáticos, um conjunto de vetores B é chamado de base de um espaço vetorial E se, a partir da combinação linear dos vetores que formam B pudermos formar qualquer vetor do espaço E e se os vetores que formam B forem linearmente independentes.
Além disso, temos que qualquer base de um espaço vetorial tem o número de vetores iguais à dimensão deste espaço.


Por exemplo:
Uma base para o conjunto dos reais (R¹) pode ser o número 1, pois a partir dele podemos formar qualquer número real multiplicando 1 por um coeficiente a1 real. -> 5,4 = 5,4*1
Uma base para o conjunto R² pode ser B = {(1,0) , (0,1)}, pois a partir destes vetores podemos formar qualquer vetor do espaço R² multiplicando pelos coeficientes reais a1 e a2. -> (2,7) = 2*(1,0) + 7*(0,1)
Nestes dois casos temos que R¹ tem dimensão 1, e R² tem dimensão 2.

Neste caso, o primeiro critério é claramente satisfeito por F, já que F tem 3 vetores, são eles:
'a', 'b' e 'c'.

O que resta saber é se 'a', 'b' e 'c' são linearmente independentes.
Aqui, precisamos saber o que é ser Linearmente Independente.
Um conjunto de vetores (v1,v2,v3,...,vn) é linearmente independente se para quaisquer coeficientes reais (a1,a2,a3,...,an), não todos nulo, temos:

a1*v1 + a2*v2 + a3*v3 + ... + an*vn ≠ 0

Agora podemos voltar ao exercício.

Do exercício temos que E(u,v,w) é uma base.

Sabendo que:
u = 2a + 2b
v = 2a - b
w = a + b - 5c

Assim, manipulando temos:
a = u/2 -b
a = (v+b)/2
a = w - b + 5c


u - 2b = v + b
b = (u - v)/3

a = u/2 - u/3 + v/3
a = (u + 2v)/6

c = (a + b - w)/5
c = [(u + 2v)/6 + (u - v)/3 - w]/5
c = (u/2 - w)/5

Se F não é um espaço vetorial:

a1*a + a2*b + a3*c = 0, para algum valor de a1, a2, a3 reais desde que não sejam todos nulos. Porém, se a única solução é a de serem todos nulos, então F é um espaço vetorial.

a1*(u + 2v)/6 + a2*(u - v)/3 + a3*(u/2 - w)/5 = 0
u*(a1/6 + a2/3 + a3/10) + v*(a1/3 - a2/3) - w*(a3/5) = 0

Para isso ser verdade, como (u,v,w) são Linearmente Independentes, esta igualdade só é válida se:

a1/6 + a2/3 + a3/10 = 0
a1/3 - a2/3 = 0, desta equação temos que a1 = a2.
a3/5 = 0, desta temos que a3 = 0

Substituindo os resultados na primeira equação temos:
a1/6 + a1/3 = 0
O que só é válido se a1 = 0.

Logo, a equação a1*a + a2*b + a3*c = 0 só é verdade se a1 = a2 = a3 = 0. Logo, F é Linearmente Independente e portanto uma base.


Exercício Resolvido - Potenciação

Um inteiro é chamado formidável se ele pode ser escrito como uma soma de potências distintas de 4 e é dito bem sucedido se ele pode ser escrito como uma soma de duas potências distintas de 6. O número de maneiras de escrevemos 2005 como a soma de um número formidável com um número bem sucedido é: 

a) 0 
b) 1
c) 2
d) 3

e) mais de 3

Solução:

Uma potência de 4 é qualquer número tal que pode ser escrito na forma: 4


Assim, vamos verificar as potências de 4 menores que 2005, isso irá facilitar a resolução do exercício:

4° = 1
4¹ = 4
4² = 16
4³ = 64
4⁴ = 256
4⁵ = 1024

A próxima potência de 4 (4⁶) é maior que 2005, portanto não serve.

Agora escreveremos as potências de 6:
6° = 1
6¹ = 6
6² = 36
6³ = 216
6⁴ = 1296

A próxima potência de 6 (6) é maior que 2005, portanto também não serve.

Agora resta verificar a combinação desses números que resulta em 2005. Porém como 2005 é ímpar, certamente teremos ou 4° = 1 ou 6° = 1 na soma.

É importante perceber que neste exercício temos a liberdade de pegar quantas potências de 4 queremos (desde que sejam distintas), porém as potências de 6 devem ser apenas duas.

Desta forma, pegaremos os maiores valores que são potências de 6 e todos os outros que são potência de 4, desde que a soma não seja superior a 2005.
1296 + 216 + 256 + 64 + 16 + 4 + 1 = 1853.

Desta forma, não existe qualquer combinação destes valores que possam resultar em 2005 pois sob estas condições o maior valor que podemos ter que não passa 2005 é 1853.

Portanto, a resposta correta é a)


Exercício Resolvido - MRU e MRUV, Mosca e trem.

Um trem esta numa estação A, inicialmente em repouso e parte com aceleração de 0,3 m/s².
Numa estação B parte do repouso outro trem, com aceleração de 0,1 m/s².
Pousada em seu nariz há uma mosca que neste mesmo instante passa a voar retilineamente em direção ao trem B com velocidade constante de 15 m/s.

Ambos os trens deslocam-se um de encontro ao outro e a distância inicial deles é de 500 m.
A mosca que inicialmente estava no nariz do trem A voa e encosta no B. Após isso, sem alterar sua velocidade, retorna e encosta no trem A, repetindo este procedimento até que os trens se chocam e a mosca morre esmagada.

a) Qual o tempo que levará até que a mosca morra esmagada?
b) Qual o deslocamento de cada um dos trens?
c) Qual a distância percorrida pela mosca?

Solução

a) A equação que descreve a posição dos trens é a equação do MRUV (Movimento Retilíneo Uniformemente Variado), já que ambos possuem aceleração constante.

SA = SoA + VoA*t + aA*t²/2
SB = SoB + VoB*t + aB*t²/2

Considerando que o trem A desloca-se em uma direção positiva (ou seja, com isso o deslocamento de B será negativo, já que os trens se deslocam em direções opostas) e que a sua posição inicial é a origem, temos que SoA = 0 e que SoB = 500 m. Como ambos os trens partem do repouso temos que suas equações da posição de cada trem ficam:

SA = aA*t²/2
SB = 500 + aB*t²/2

Como o trem B se desloca numa direção negativa, sua aceleração é negativa, aB = -0,1 m/s², logo:

SA = 0,3*t²/2
SB = 500 - 0,1*t²/2

Quando os trens se chocam, ambos estão no mesmo ponto, logo SA = SB. E com isso podemos calcular o tempo que leva até eles se chocarem:

SA = SB
0,3*t²/2 = 500 - 0,1*t²/2
Multiplicando tudo por 2
0,3*t² = 1000 - 0,1*t²
Com isso
0,4*t² = 1000
t² = 2500
t = 50 s

b) Como o tempo que os trens levam para se chocarem é de 50 s, basta substituir este tempo nas equações da posição dos trens e ver quanto eles se deslocaram. Para o trem A:

SA = 0,3*t²/2
SA = 0,3*50²/2
SA = 375 m
Logo o deslocamento do trem A é de 375 m.

Para o trem B:

SB = 500 - 0,1*t²/2
SB = 500 - 0,1*50²/2
SB = 500 - 125
SB = 375 m

Este resultado não é o quanto o trem B se DESLOCOU, mas sim a POSIÇÃO do trem B após os 50 s. Como deveria ser, veja que o resultado é o mesmo do trem A, o que é bastante óbvio já que eles se chocam e para isso precisam estar na mesma posição. Para saber o deslocamento do trem B, basta lembrar que ele partiu do ponto SoB = 500 m. Se no fim ele estava no ponto 375 m, então ele se deslocou:

500 - 375 = 125 m
Logo, o deslocamento do trem B é de 125 m.

c) Para o cálculo de quanto a mosca percorreu basta usar as equações de MRU (Movimento Retilíneo Uniforme) pois a velocidade da mosca não se altera em momento nenhum.

SMOSCA = VMOSCA*t

Como já sabemos o tempo (t = 50 s) e a velocidade dela é de 15 m/s:

SMOSCA = 15*50 = 750 m
Logo, a distância percorrida pela mosca é de 750 m.

Comentários:
A distância percorrida pela mosca é maior que a distância entre os trens, o que parece ser bem estranho. Porém lembre-se que a mosca fica "indo e voltando" de um trem para o outro e por isso acaba percorrendo uma distância maior que os 500 m.


Limite fundamental exponencial (Euler)

Comprovação com uso da análise da existência do limite fundamental de Euler

Neste post será comprovada a existência do limite fundamental exponencial.
Para isto, será utilizado o seguinte teorema e a seguinte proposição:


O limite a ser calculado é dado por:
Demonstração da existência do Limite de Euler

Assim, definimos
Temos que a função f(x) acima tem seu domínio no conjunto dos reais exceto o zero. Como queremos o limite para x tendendo ao infinito, então o zero não será um problema. Neste caso, podemos definir a sequência xn = n, onde n são números inteiros e portanto a sequência esta contida no domínio da função f(x), podendo ser aplicado o Teorema 1.
Desta forma:


Porém, como n é inteiro, podemos escrever f(n) em binômio de Newton na forma de uma série:


Para seguir com os cálculos é importante saber se f(n) é crescente ou decrescente, pois isso irá nos permitir concluir se existe o limite exponencial.
Sabemos que:


Agora, para verificar se é crescente ou decrescente, irei iniciar o estudo supondo que a função é crescente e assim, saber se isso é verdadeiro ou não. Se ela for crescente, então f(n) < f(n+1), ou seja:


Na etapa (3) acima, é possível verificar que o termos de dentro do somatório do lado esquerdo é negativo e portanto a desigualdade é verdadeira, o que garante que f(n) é crescente como suposto inicialmente.

Agora, um passo importante é saber se f(n) é limitado, ou seja, que existe um K tal que, para qualquer n, f(n) < K. Com isso, da Proposição 1, é possível garantir que f(n) converge.

Verificando se f(n) é limitada superiormente:


O somatório obtido acima é a soma de uma PG, que é facilmente calculado:


Logo, temos que f(n) é limitada superiormente e crescente, o que garante que o limite existe. O valor do limite não é possível ser calculado sem o uso de um software ou mesmo de recursos envolvendo derivada ou série de Taylor, que a meu entender são conteúdos que estão a frente destes aplicados aqui.

Porém, caso deseja-se calcular este limite, pode ser feito com o uso da regra de L'Hopital, por exemplo:


Substituindo a variável 1/x = y e após isso aplicando L'Hopital, temos:



Exercício Resolvido - Geometria analítica: Reta e elipse

Determine a equação da reta tangente à elipse de equações paramétricas:
x = 4*Cos(t)
y = 3*Sen(t)
no ponto correspondente ao valor paramétrico t = π/4. Identifique os vértices e os focos da elipse. Represente graficamente, num mesmo plano, a elipse e a reta tangente.

Solução:
Se a reta é tangente à elipse no ponto para t = π/4 então, a reta deve passar pelo ponto da elipse onde t = π/4 e a derivada da reta (inclinação) deve ser a mesma da derivada da elipse neste mesmo ponto.
Neste caso, temos que para t = π/4:

x = 4*Cos(π/4) = 2*√2
y = 3*Sen(π/4) = 1,5*√2

A derivada da elipse é facilmente calculada derivando a equação paramétrica com relação a t

x' = -4*Sen(t)
y' = 3*Cos(t)

Para t = π/4:

x' = -2*√2
y' = 1,5*√2

Assim:

dy/dx = y'/x' = -0,75

e esta é a inclinação da elipse e portanto da reta neste ponto.
Assim, a reta é dada por:

y = -0,75*x + b

Mas esta reta passa pelo ponto (2*√2 , 1,5*√2)
Assim:

1,5*√2 = -0,75*(2*√2) + b
b = 3*√2

A reta será:

y = -0,75*x + 3*√2


Os vértices da elipse podem ser determinados facilmente com a equação dela já que o centro desta elipse é o ponto (0,0). Com isso, os vértices encontram-se sobre os eixos, no caso, para os seguintes valores de t:

t = 0
t = π/2
t = π
t = 3π/2

Nestes valores de t, temos os seguintes pontos:
t = 0
x = 4, y = 0
t = π/2
x = 0, y = 3
t = π
x = -4, y = 0
t = 3π/2
x = 0, y = -3

Os focos podem ser determinados já que conhecemos os vértices. Como os vértices são dados por (±4,0) e (0,±3), temos que:

f² = 4² - 3² = 7
f = (±√7,0)




Exercício Resolvido - Geometria analítica: Ponto, Reta e Circunferência no plano.

Sejam A(-7,4) e B (5,-12) pontos no plano.
a)Encontre a inclinação da reta que contém A e B
b)Encontre uma equação da reta que passa por A e B.Quais as intersecções com os eixos ?.
c)Encontre o ponto médio do segmento AB.
d)Encontre o comprimento do segmento AB.
e)Encontre uma equação para a mediatriz de AB.
f)Encontre uma equação para a circunferência para o qual AB é um diâmetro.

Solução:

a) A inclinação da reta é dada pelo ângulo formado entre a reta e o eixo das abcissas (eixo x). Assim, temos que pensar na reta como um triângulo retângulo. Veja a figura a seguir:






Na figura acima, temos a reta que passa pelos pontos A e B e o triângulo retângulo que comentei anteriormente, formado pelos pontos A, B e C. Observe que o segmento de reta AC é paralelo ao eixo x e portanto, o ângulo formado pela reta e o eixo x é o mesmo formado pela reta e o segmento AC.
Porém, perceba que a reta é decrescente, ou seja, quanto maior o valor de x, menor o de y na reta. Assim, a inclinação é um ângulo no intervalo 90° < inclinação < 180°.
Bom, do desenho acima podemos perceber que o ângulo CÂB somado ao ângulo de inclinação da reta é 180°.

tg(a + b) = (tg(a) + tg(b))/(1 - tg(a)*tg(b))

Como, neste caso, a + b = 180° e sabendo que Tg(180°) = 0

(tg(a) + tg(b))/(1 - tg(a)*tg(b)) = 0
tg(a) + tg(b) = 0
tg(a) = -tg(b)

Assim, a tangente do ângulo CÂB é a mesma tangente do ângulo de inclinação da reta, porém com sinal trocado.
Podemos perceber que a tangente do ângulo CÂB é dada por:

tg(a) = BC/CA

Onde:

CA = 5 - (-7) = 12
BC = 4 - (-12) = 16
tg(a) = 16/12 = 4/3

Logo, o ângulo CÂB = ArcTg(4/3) = 53,13°
Assim, como:
CÂB + inclinação = 180°
Inclinação = 180° - 53,13° = 126,87°



b) A equação da reta pode ser obtida de forma mais simples. Temos que toda equação de reta num plano é da forma:

y = a*x + b

Como temos dois pontos que definem essa reta:

A(-7,4) e B(5,-12), então
4 = a*(-7) + b (Ponto A)
-12 = a*(5) + b (Ponto B)

Das equações acima, temos que:

a = -4/3
b = -16/3

Assim, a equação da reta é:

y = (-4/3)*x - 16/3



c) Para obter o ponto médio de um segmento, basta somar os pontos que limitam este segmento e dividir por dois, neste caso:

A = (-7,4)
B = (5,-12)
(A+B)/2 = ( -7 + 5 , -12 + 4) / 2 = (-2/2 , -8/2) = (-1,-4)
M = (-1,-4)

Na figura a seguir é possível verificar o ponto médio em vermelho:




d) Para o cálculo do comprimento AB vamos voltar ao triângulo retângulo que foi utilizado no exercício a). Vimos que podemos formar um triângulo retângulo, formado pelos pontos ABCA. Neste caso, o segmento AB é a hipotenusa do triângulo, com isso, como já calculamos o valor dos segmentos CA e BC no item a), temos:

AB² = CA² + BC²
AB² = 12² + 16²
AB² = 400
AB = 20.

Outro método mais direto de calcular este valor é com base nos pontos dados, veja como:

AB² = [ 5 - (-7) ]² + [ 4 - (-12) ]²

Onde cada um desses valores são as coordenadas dos pontos A e B. Com isso teremos que AB = 20, como calculado anteriormente.



e) Mediatriz é o conjunto de pontos que são equidistantes a dois pontos determinados. Neste caos é o conjunto de pontos equidistantes aos pontos A e B.

Assim, seja um ponto D(x,y) equidistante a A e B, desta forma, a distância de D para A é dada por:

dist(DA)² = [ x - (-7) ] ² + [ y - 4 ]² = x² + 14x + 49 + y² - 8y + 16
dist(DB)² = [ x - 5 ]² + [ y - (-12) ]² = x² - 10x + 25 + y² + 24 + 144

Como as distância devem ser iguais:

x² + 14x + 49 + y² - 8y + 16 = x² - 10x + 25 + y² + 24y + 144

Simplificando temos os termos iguais:

14x + 49 - 8y + 16 = -10x + 25 + 24y + 144
24x + 65 = 32y + 169
32y = 24x - 104
4y = 3x - 13
y = (3/4)x - 13/4
_________________________________________________________________________________
Veja também:

Exercício Resolvido - Geometria analítica: Reta e elipse

_________________________________________________________________________________

Podemos concluir que a mediatriz de dois pontos é uma reta, dada a equação obtida acima.




f) Se AB é um diâmetro do círculo, então o ponto médio de AB é o centro da circunferência. Como já temos todos estes dados, calculados anteriormente, sabemos que o comprimento AB = 20, logo o raio da circunferência é de 10. Como o centro dessa circunferência é (-1,-4) a equação é dada por:

[ x - (-1) ]² + [ y - (-4) ]² = 10²
[ x + 1 ]² + [ y + 4 ]² = 10²


Perceba que além do segmento AB, a mediatriz também passa pelo centro desta circunferência e portanto um segmento seu forma um diâmetro desta circunferência.


Exercício Resolvido - Limite

Calcule ou mostre que não existe, sem aplicar L'Hôpital e/ou aproximações polinomiais.

Solução:
Para resolver esses limites, um teorema deve ser enunciado:

Teorema 1Sejam as funções f,g: D →
Sejam as constantes a Є D’ e b1,b2 Є tais que limx→a f(x) = b1 limx→a g(x) = b2
Então:
a) limx→a (f + g)(x) = b1 + b2
b) limx→a (f*g)(x) = b1*b2
c) Se b2 ≠ 0  limx→a (f/g)(x) = b1/b2
Onde D’ são os pontos de acumulação do domínio de f e g.

a)

Fazendo uma substituição de variável u = sen(x)/cos(x) = tg(x) onde para x tendendo a zero, u também tende a zero, adotando o Teorema 1 e conhecendo o limite:
temos que:
Gráfico da função:

b) Para quem não percebeu (ou para quem não sabe ainda), esse limite é a derivada da função seno.
Percebam que no limite, x → a, ou seja, x é um pouco diferente de a, mas muito próximo de a. Assim, podemos dizer que x = a + h, sendo que no limite, h → 0.
Como a é uma constante, cos(a) e sen(a) também é constante e poderá sair de dentro do limite quando estiver multiplicando. 
Conhecendo o limx→0 sen(x)/x mencionado no exercício anterior, temos:
Mas:
Onde limh→0 sen(h)/h = 1 e limh→0 sen(h)/[cos(h)+1] = 0/2 = 0. Logo, 1*0 = 0. Portanto:
Assim, voltando ao exercício:
Gráfico da função para a = 0 em azul, a π/4 em vermelho e a = π/2 em preto:

c)Para resolver este exercício, devemos fatorar os polinômios que estão dentro da raiz:
1-x³ = (1-x)*(x² + x + 1)
x²-1 = (x-1)*(x+1)

Da divisão, o termo (x-1) pode ser simplificado, ficando:
Gráfico da função em azul e em vermelho uma reta horizontal passando pela raiz cúbica de -3/2.



Exercício resolvido - Raiz de polinômio

Considere o polinômio 5x³ – 3x² – 60x + 36 = 0. Sabendo que ele admite uma solução da forma √n, onde n é um numero natural, pode se afirmar que: 
A)1≤ n < 5 
B)6 ≤ n < 10 
C)10 ≤ n < 15 
D)15 ≤ n < 20 
E)20 ≤ n < 30

Solução:
Vou resolver esse exercício através de análise utilizando as alternativas. 
Sabe-se que, pelo Teorema do Valor Intermediário, num intervalo [a,b] do domínio de uma função contínua, f(a) < f(b), então existe f(c) tal que f(a) < f(c) < f(b) tal que c Є [a,b]. Chamando 5x³ - 3x² - 60x + 36 = f(x).

Obs.: A lógica desse teorema é a seguinte. Se uma função é contínua, então você consegue desenhar o gráfico dela sem tirar o lápis do papel, assim, se em algum momento ela é negativa e em outro ela é positiva, certamente ela passou pelo zero, e por todos os outros valores que estão entre esses dois.

Assim, para a alternativa A): 
f(√1) = 5*(√1)³ - 3*(√1)² - 60*√1 + 36 = -11
f(√5) = 5*(√5)³ - 3*(√5)² - 60*√5 + 36
f(√5) = 5*5*√5 - 3*5 - 60*√5 + 36
f(√5) = 25*√5 - 15 - 60*√5 + 36
f(√5) = 21 - 35√5 =  -57,26

Ambos os resultados são negativos o que não nos garante a existência de uma raiz no intervalo. Porém, para testarmos todas as possibilidades que as alternativas oferecem, seriam muitos testes o que nos leva a crer que devemos achar algum meio mais rápido. Um ponto importante a se perceber é que se n não é um quadrado perfeito, então os termos de coeficiente 5 e -60 devem se anular, pois como eles multiplicam x com expoente ímpar eles serão os únicos termos multiplicando uma raiz. Assim, se eles não se anularem, o resultado não será zero como desejado. Desta forma, caso n não seja um quadrado perfeito:

5*(√n)³ - 60*(√n) = 0 
5*n*(√n) – 60*(√n) = 0 
5*n*(√n) = 60*(√n) 
Dividindo tudo por 5*(√n) 
n = 12

Verificando: 
f(√12) = 5*(√12)³-3*(√12)²-60*(√12)+36 = 60*(√12) – 3*12 – 60*(√12) + 36 = 0. 
Resposta: Letra C), com n = 12.

Gráfico da função:
Dando um zoom:


Exercício Resolvido - Teorema do Valor Intermediário

Usando o Teorema do Valor Intermediário (T.V.I.), mostre que a equação abaixo possui alguma raiz negativa
7x²°¹³ − 2x +1= 0 

Solução:
Obs.: O teorema do valor intermediário diz que se uma função é contínua num intervalo [a,b] e se existe um valor k tal que:

f(a) < k < f(b)

então, existe um valor c tal que f(c) = k.

Este teorema é bastante intuitivo, basta perceber que se uma função é contínua e se ela passa por dois valores, então ela passou por todos os que estão entre eles.
Exemplo:
f(x) = x² + x + 3
f(0) = 3
f(2) = 9
Assim, para qualquer valor k entre 3 e 9 existe um c Є [0,2] tal que f(c) = k, veja:
Para k = 5, c = 1
Para k = 6, c = 1,30278 
Para k = 7,5, c = 1,679
...

Voltando ao exercício:
Temos então:
f(x) = 7x²°¹³ − 2x +1
Assim:
f(0) = 1
f(-1) = 7*(-1) + 2 + 1 = -7 + 3
f(-1) = -4
Assim, basta adotar k = 0 (que esta entre [-4,1]) e, com base no teorema do valor intermediário, garantimos que existe um c Є [-1,0] tal que:

f(c) = k = 0.



Exercício Resolvido - Assíntotas

Determine todas as assíntotas das funções abaixo:
a) (2x - 1) / (x - 3)
b) (x² + 3) / (x + 1)

Solução:
Obs.: Assíntota é uma reta na qual uma equação tende a ela no infinito porém nunca chega a ela. Desta forma, dada uma função f(x), se y = ax + b é sua assíntota, então:
a)

Assim, para tirar o x do denominador, temos:


simplificando o x e eliminando os termos constantes divididos por x, pois eles tendem a zero, temos:

Assim, percebemos que a deve ser zero, pois se não for, o limite tenderia a infinito. Ainda, se a = 0 teremos que para que o limite seja nulo:

2 - b = 0, logo, b = 2

Assim, a reta assíntota neste caso é:
y = 2.

Abaixo o gráfico da função e da assíntota y = 2, para x tendendo a infinito positivo e negativo:



b) Analogamente temos:

Assim, para que o limite seja nulo, devemos ter:
1-a = 0, logo a = 1
a + b = 0, logo b = -1

Assim, a reta assíntota neste caso é:
y = x - 1

Abaixo o gráfico da função e sua assíntota:

Perceba também que as retas x = 3 (no exercício a) e x = -1 (no exercício b) também são assíntotas já que esse valor de x é uma descontinuidade da função e a medida que x se aproxima destes valores, a função tende a infinito (infinito positivo ou infinito negativo, dependendo da direção de aproximação).